Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Pieter E.M. Dieltiens, Christophe M.L. Vande Velde, Herman J. Geise and Frank Blockhuys*

Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium

Correspondence e-mail: frank.blockhuys@ua.ac.be

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
ωR factor $=0.107$
Data-to-parameter ratio $=7.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Methylpyrrole-2,5-dicarbaldehyde

The solid-state structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$, is reported. The crystal packing is shaped mainly through carbonyl-carbonyl interactions on the one hand, and C $\mathrm{H} \cdots n(\mathrm{O})$ hydrogen bonds and $\pi(\mathrm{CO}) \cdots \pi$ interactions on the other.

Comment

1-Methyl-2,5-pyrroledicarbaldehyde, (I) (Fig. 1), has been a sought-after intermediate, especially for the synthesis of organic semiconductor materials (Berlin et al., 1987; Cadamuro et al., 1993, 1996; Van Der Looy et al., 1997) but also for biologically active compounds and several macrocycles (Cadamuro et al., 1993, 1996).

(I)

The structure crystallizes in the non-centrosymmetric space group $P 2_{1} 2_{1} 2_{1}$ with no mirror symmetry present in the molecule or the structure. As a consequence, the two carbaldehyde groups have different environments.

The crystal structure can be described as stacks of individual molecules along the [100] direction (Fig. 2) and by planes parallel to (001) consisting of stacked ribbons running along the [110] and [110] directions (Fig. 3). Between the stacks of individual molecules along the [100] direction, the stabilizing interactions are type II carbonyl-carbonyl interactions, as described by Allen et al. (1998). These are situated around the twofold screw axis and involve the carbonyl group $\mathrm{C} 6=\mathrm{O} 6$:

Figure 1
View of (1), including the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 14 December 2005 Accepted 19 December 2005 Online 23 December 2005

C6 $\cdots \mathrm{O}^{\mathrm{i}} 3.318$ (3) \AA Å [symmetry code (i) $\left.-\frac{1}{2}+x, \frac{1}{2}-y,-z\right]$ and O6 \cdots C $^{\mathrm{i}} 3.067$ (3) A. They are shown in Fig. 2 by the orange dotted lines. Perpendicular to the direction of these carbonylcarbonyl contacts, the stacks display a short contact between the C atom of a methyl group and the O atom of a carbonyl group, viz. $\mathrm{N} 1-\mathrm{C} 7 \cdots \mathrm{O}^{\text {ii }} 3.157$ (3) $\AA, 179.06$ (16) ${ }^{\circ}$ [symmetry code (ii) $\frac{1}{2}+x,-\frac{1}{2}-y,-z$]. This contact is shown in Fig. 2 by the cyan dotted lines.

The remaining contacts involve the other carbonyl group $\mathrm{C} 5=\mathrm{O} 5$ and interact either within the aforementioned ribbons, such as the weak hydrogen bond $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 5^{\text {iii }}$ 2.48 (3) $\AA, D \cdots A 3.417$ (3) Å, 170 (2) ${ }^{\circ}$ [symmetry code (iii) $-1+x, 1+y, z]$ (cyan dotted lines in Fig. 3), or between the ribbons, such as $\mathrm{C} 4 \cdots \mathrm{C} 5^{\text {iv }} 3.394$ (4) \AA [symmetry code (iv) $-1+x, y, z]$ (orange dotted lines in Fig. 3), forming the planes mentioned above. The latter contact is the expression of a typical $\pi(\mathrm{CO}) \cdots \pi$ contact, in this case given by $C g A \cdots \mathrm{O} 5^{\text {iv }}-$ $C 5^{\text {iv }} 3.598$ (2) $\AA, 3.316 \AA$ perp., 72.26 (17) ${ }^{\circ}$, where $C g A$ indicates the centroid of the pyrrole ring and 'perp.' indicates the perpendicular distance of O 5 to the plane of the pyrrole ring.

In conclusion, (I) displays a chiral structure which is completely dominated by interactions concerning the two different carbonyl groups: one of them is involved in carbonylcarbonyl dipolar interactions, the other in $\pi(\mathrm{CO}) \cdots \pi$ contacts and $\mathrm{CH} \cdots n(\mathrm{O})$ hydrogen bonds. This is in contrast with the derivative which lacks the N-methyl group (Adams et al., 1986), which has an achiral Pn structure in which the crystal symmetry does not coincide with the molecular symmetry. Unsurprisingly, the network in the latter structure consists of hydrogen-bonded layers involving the H atoms of the aldehyde group and the aromatic ring as well as those on the N atom. The O atoms of the carbonyl groups always act as acceptors. In addition, $\pi-\pi$ interactions exist between the layers.

Experimental

All starting materials were obtained from Acros and used as received. Benzene was dried over 3 A molecular sieves prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity-400 apparatus.
N-Methyl-2,5-pyrroledicarbaldehyde (I) was prepared starting from N-methyl-2,5-bis(hydroxymethyl)pyrrole (II). For the synthesis of the latter N-methylpyrrole ($22 \mathrm{ml}, 0.255 \mathrm{~mol}$), ground paraformaldehyde $(16.1 \mathrm{~g}, \quad 0.536 \mathrm{~mol})$, potassium carbonate $(0.2 \mathrm{~g}$, $0.0015 \mathrm{~mol})$ and water $(5 \mathrm{ml})$ were mixed together and heated under a nitrogen atmosphere to $323-333 \mathrm{~K}$ until all the paraformaldehyde had dissolved. The reaction mixture was then cooled in a water bath until completion of the exothermic process (ca 30 min .). The mixture was subsequently reheated to 353 K for 3 h . To remove water, N methylpyrrole and N-methyl-2-(hydroxymethyl)pyrrole from the resulting crude reaction mixture, it was distilled in vacuo (1$2 \mathrm{mmHg} / 323 \mathrm{~K}$). The remaining impure precipitate was then recrystallized from propanol $(10-15 \mathrm{ml})$ and washed with a small amount of chloroform. Overnight cooling of the filtrate yielded an additional fraction of (II). The yield was $22.7 \mathrm{~g}(65 \%)$ of an off-white powder [m.p. 386-387 K (uncorrected) in accordance with the literature (Chelintzev \& Maksorov, 1916; Severin \& Ipach, 1975)]. (II) should be refrigerated to prevent oxidation. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}, \mathrm{TMS}): \delta 3.71\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.60\left(d, 4 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$,

Figure 2
View of the structure projected on to the $b c$ plane. For details, see text.

Figure 3
View of the structure along the $b c$ cell diagonal. For details, see Comment.
$6.40(s, 2 \mathrm{H}, \mathrm{H} 3$ and H 4$), 7.26(s, 2 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz , TMS $): \delta 30.6\left(\mathrm{CH}_{3}\right), 57.1\left(\mathrm{CH}_{2}\right), 132(\mathrm{C} 2$ and C 5$), 107.7(\mathrm{C} 3$ and C4).
N-methyl-2,5-pyrroledicarbaldehyde (I) was prepared by refluxing a mixture consisting of (II) ($7.7 \mathrm{~g}, 0.055 \mathrm{~mol}$), dry benzene (300 ml) and precipitated active manganese dioxide ($25.0 \mathrm{~g}, 0.287 \mathrm{~mol}$) for 6 h and subsequently stirring at room temperature for 24 h . The precipitate was filtered off and washed carefully with 1,4-dioxane or tetrahydrofuran. The impure dark-brown crystals were sublimed under reduced pressure (typically for 6 h at $0.1 \mathrm{mmHg} / 338 \mathrm{~K}$) (Severin \& Ipach, 1975). (I) was collected in a yield of $3.0 \mathrm{~g}(40 \%)$ as light-yellow crystals [m.p. 370 K (uncorrected); lit. 368-369 K (Cresp \& Sargent, 1972; Cresp \& Sargent,1973; Severin \& Ipach, 1975)]. The NMR data of (I) are identical to those of Loader et al. (1982) [${ }^{1} \mathrm{H}$ NMR] and Cadamuro et al. (1993) [${ }^{13} \mathrm{C}$ NMR].

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$
$M_{r}=137.14$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.650(1) \AA \AA$
$b=6.457(1) \AA$
$c=22.386(4) \AA$
$V=672.1(2) \AA^{3}$
$Z=4$
$D_{x}=1.355 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 25 reflections
$\theta=5.7-19.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Prism, light yellow
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection

Enraf-Nonius Mach3
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
1499 measured reflections
766 independent reflections
652 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.107$
$S=1.00$
766 reflections
109 parameters
H atoms treated by a mixture of independent and constrained refinement

The large value for the intensity decay was caused by the volatility of the compound. Sublimation took place during the course of the measurement. All H atoms were located in a difference density map and refined freely $[\mathrm{C}-\mathrm{H}=0.90$ (3)-0.99 (3) $\AA]$, except the methyl H atoms, for which a common distance was refined and the group was rotated so that it coincides with the maxima in the Fourier difference $\operatorname{map}\left[\mathrm{C}-\mathrm{H}=0.92 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Bruno et al., 2002) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

$$
\begin{aligned}
& \theta_{\max }=25.3^{\circ} \\
& h=0 \rightarrow 5 \\
& k=0 \rightarrow 7 \\
& l=-26 \rightarrow 26 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min} \\
& \quad \text { intensity decay: } 21 \%
\end{aligned}
$$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0701 P)^{2}\right. \\
&+0.0615 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}
\end{aligned}
$$

CVV thanks the FWO Vlaanderen for a grant as a Research Assistant. The authors thank Professor Dr. R. Dommisse and J. Aerts for the NMR measurements.

References

Adams, H., Beailey, N. A., Fenton, D. E., Moss, S, Rodriguez de Barbarin, C. O. \& Jones, G. (1986). J. Chem. Soc. Dalton Trans. pp. 693-699.
Allen, F. H., Baalham, C. A., Lommerse J. P. M. \& Raithby P. R. (1998). Acta Cryst. B54, 320-329.
Berlin, A., Bradamante, S., Ferracciolo, R., Pagani, G. A. \& Sannicolò, F. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 2631-2635.

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.

Cadamuro, S., Degani, I., Fochi, R., Gatti, A. \& Piscopo, L. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 2939-2944.
Cadamuro, S., Degani, I., Gatti, A. \& Piscopo, L. J. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 2365-2369.
Chelintzev, V. V. \& Maksorov, B. V. (1916). J. Russ. Phys. Chem. Soc. 48, 748779.

Cresp, T. M. \& Sargent, M. V. (1972). J. Chem. Soc. Chem. Comm. pp. 807808.

Cresp, T. M. \& Sargent, M. V. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 29612971.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Loader, C. E., Barnett, G. H. \& Anderson, H. J. (1982). Can. J. Chem. 60, $383-$ 289.

Severin, Th. \& Ipach, I. (1975). Chem. Ber. 108, 1768-1775.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl Cryst. 36, 7-13.
Van Der Looy, J. F. A., Thys, G. J. H., Dieltiens, P. E. M., De Schrijver, D., Van Alsenoy, C. \& Geise, H. J. (1997). Tetrahedron, 53, 15069-15084.

